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The heterocycle compounds, with their diverse functionalities, are particularly
effective in inhibiting Janus kinases (JAKs). Therefore, it is crucial to identify the
correlation between their complex structures and biological activities for the
development of new drugs for the treatment of rheumatoid arthritis (RA) and
cancer. In this study, a diverse set of 28 heterocyclic compounds selective for
JAK1 and JAK3 was employed to construct quantitative structure-activity
relationship (QSAR) models using multiple linear regression (MLR). Artificial
neural network (ANN) models were employed in the development of QSAR
models. The robustness and stability of the models were assessed through
internal and external methodologies, including the domain of applicability
(DoA). The molecular descriptors incorporated into the model exhibited a
satisfactory correlation with the receptor-ligand complex structures of JAKs
observed in X-ray crystallography, making the model interpretable and
predictive. Furthermore, pharmacophore models ADRRR and ADHRR were
designed for each JAK1 and JAK3, proving effective in discriminating between
active compounds and decoys. Both models demonstrated good performance in
identifying new compounds, with an ROC of 0.83 for the ADRRR model and an
ROC of 0.75 for the ADHRR model. Using a pharmacophore model, the most
promising compounds were selected based on their strong affinity compared to
the most active compounds in the studied series each JAK1 and JAK3. Notably,
the pharmacokinetic, physicochemical properties, and biological activities of the
selected compounds (As compounds ZINC79189223 and ZINC66252348) were
found to be consistent with their therapeutic effects in RA, owing to their non-
toxic, cholinergic nature, absence of P-glycoprotein, high gastrointestinal
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absorption, and ability to penetrate the blood-brain barrier. Furthermore, ADMET
properties were assessed, andmolecular dynamics andMM/GBSA analysis revealed
stability in these molecules.
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interleukin, cancer

Introduction

Autoimmune diseases are characterized by an inappropriate
immune system response against the body’s healthy cells and tissues
(Lai and Dong, 2016; Hosseini et al., 2020). They encompass a
heterogeneous group of conditions such as rheumatoid arthritis
(RA), psoriasis, or type 1 diabetes (Elekofehinti et al., 2018; Tshiyoyo
et al., 2022). These diseases result from a disruption of immune
tolerance, leading to an abnormal self-reactive response. The JAK-
STAT signaling pathway plays a key role in the activation and
differentiation of immune cells. It is involved in transmitting
external signals to cells through pro-inflammatory cytokines
(Agrawal, n. d.; Pawluk et al., 2020). Janus kinases (JAK) are
tyrosine kinases associated with cytokine receptors that, when
activated, phosphorylate STAT transcription factors (Faris et
al., 2023c).

Over the past 2 decades, significant strides have been achieved in
the realm of pioneering therapies for autoimmune disorders,
particularly within the field of biology. Notably, the strategic
targeting of diverse cytokine pathways has demonstrated
remarkable effectiveness in addressing a variety of medical
conditions. For instance, the endorsement of anti-IL12/
IL23 agents or more selectively tailored anti-IL23 treatments for
afflictions such as psoriasis, psoriatic arthritis, and Crohn’s disease
in both European and American regions has substantiated their
efficacy and advantageous safety profiles (Lai and Dong, 2016).
Nonetheless, despite those therapeutic breakthroughs, the inherent
immunogenicity of therapeutic antibodies poses a persistent
challenge, further exacerbated by the restriction that their
administration is confined to parenteral routes. Promising
avenues for the treatment of various immune disorders, including
psoriasis, rheumatoid arthritis (RA), and inflammatory bowel
disease (IBD), lie in the domain of JAK inhibitors, which are
either already available on the market or are presently
undergoing developmental stages (Gadina et al., 2018).

The JAK family encompasses four distinct members: JAK1,
JAK2, JAK3, and TYK2, all of which belong to the category of
tyrosine kinases. These kinases form associations with the
intracellular domains of diverse cytokine and growth factor
receptor chains. Activation of JAKs is instigated through ligand-
induced conformational alterations within receptor complexes,
setting off a phosphorylation cascade that ultimately activates
members of the signal transducer and activator of the
transcription (STAT) family (Kurdi and Booz, 2009). Once
phosphorylated, STATs migrate into the cell nucleus, where they
modulate gene expression in a manner contingent upon the specific
ligand (see Figure 1A). Figure 1A elucidates the intricate process of
cytokine signaling. Furthermore, it has been scientifically established
that disparate cytokine receptors create specific heterodimers or

homodimers in association with JAK enzymes (as depicted in
Figure 1B). Each JAK, in turn, is affiliated with multiple
receptors. Extensive research has elucidated that JAK1/JAK3 is
reliant on γ-common chain cytokines, the JAK1/JAK2 complex is
associated with interferon-gamma (INFγ), interleukin-6 (IL-6), and
other gp130 cytokines. Meanwhile, the JAK1/TYK2 heterodimer
binds to type I interferons and the IL-10 family of cytokines.
Notably, JAK2 stands out by forming a homodimer on
erythropoietin (EPO) and leptin receptors.

Figure 1B elucidates the intricate interconnection between JAK
kinases and cytokine receptors in the form of heterodimers. In
recent times, a multitude of JAK inhibitors have either garnered
regulatory approval or are presently during clinical development
(Figure 1B). These inhibitors manifest a spectrum of distinctive
attributes. Ruxolitinib, representing the inaugural JAK inhibitor to
make its foray into the market, operates as a JAK1/JAK2 inhibitor. It
is harnessed for the therapeutic management of polycythemia vera
and myelofibrosis (McKeage, 2015). Meanwhile, Tofacitinib, the
pioneer JAK inhibitor adopted for the management of autoimmune
maladies, functions as a pan-JAK inhibitor, with a degree of
selectivity directed toward JAK1, JAK2, and JAK3 (Emery et al.,
2018; Faris et al., 2024).

Drawing from the accumulated wealth of knowledge concerning
JAKs and their intricate interactions with cytokine receptors,
pharmaceutical enterprises have been diligently engaged in the
development of compounds featuring refined selectivity profiles
(Figure 2). These novel compounds are designed to efficaciously
regulate the disparate signaling pathways governed by various
cytokines. A notable exemplar of such endeavors includes the
development of JAK1 inhibitors, typified by Filgotinib,
Baricitinib, Upadacitinib, and Abrocitinib, along with
TYK2 inhibitors like BMS-986165. These compounds are
presently undergoing clinical evaluation and hold promise as
potential therapeutic agents for a spectrum of autoimmune
maladies, encompassing rheumatoid arthritis (RA), psoriasis, and
Crohn’s disease (6,7).

JAK3 and JAK1 are involved in the signaling of numerous pro-
inflammatory cytokines. Their inhibition serves to thwart their pro-
inflammatory activity. These two kinases play a role in the activation
and proliferation of T and B lymphocytes (Henderson Berg et al.,
2022). Their blockade reduces the activation of the immune system
in autoimmune diseases. Inhibiting JAK3 or JAK1 decreases the
production of pro-inflammatory cytokines such as interleukin-6 and
interleukin IL-17, two key cytokines in rheumatoid arthritis
(Henderson Berg et al., 2022; Kotyla et al., 2022).
JAK3 inhibitors have demonstrated significant efficacy in treating
rheumatoid arthritis by reducing inflammation and symptoms
(Boyadzhieva et al., 2022; Chen et al., 2023; Sardana et al., 2023).
Their immunomodulatory mechanism of action makes them a
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therapeutic option for cases resistant to conventional treatments like
DMARDs and anti-TNF agents. Gamma is a common subunit of
many cytokines such as interleukin IL-2, IL-4, IL-7, IL-9, IL-15, and
IL-21 (Prasad et al., 2023). When these cytokines bind to their
receptor, they activate the JAK/STAT signaling pathway through the
phosphorylation of gamma by receptor-associated JAK kinases
(Choy, 2019).

In the case of interleukin IL-2, IL-4, IL-9, and IL-21, it is primarily
JAK1 that phosphorylates gamma (Menet et al., 2013). For interleukin
IL-7 and IL-15, it is JAK3 that is responsible for gamma
phosphorylation (Menet et al., 2013). This phosphorylation creates
binding sites for STAT proteins, which, once activated, stimulate the
transcription of genes involved in the proliferation and differentiation
of lymphocytes (Menet, 2018; Morris et al., 2018). Inhibition of
JAK1 or JAK3 by medications thus blocks the phosphorylation of
gamma induced by associated cytokines. This prevents the activation
of downstream STAT pathways and, therefore, the pro-inflammatory
immune response mediated particularly by T and B lymphocytes.
JAK1 and JAK3, through gamma phosphorylation, play a central role
in the signal transduction of numerous pro-inflammatory cytokines,
explaining their involvement in autoimmune diseases (Menet, 2018).

Inhibition of these two kinases allows for the modulation of immune
system activation in autoimmune diseases through similar effects on
the JAK/STATpathway. By blocking these proteins, inflammation can
be reduced, and disease progression slowed, providing an alternative
for patients for whom standard treatments are ineffective.

The JAKs uniquely possess an integrated pseudokinase domain
(JH2) that regulates the adjacent kinase domain (JH1). The
therapeutic targeting of JH2 domains has been less thoroughly
explored and may present an avenue to modulate the JAKs
without the adverse effects associated with targeting the adjacent
JH1 domain (Henry and Jorgensen, 2023; Rodriguez Moncivais
et al., 2023). The potential of this strategy was recently demonstrated
with the FDA approval of the TYK2 JH2 ligand deucravacitinib for
treating plaque psoriasis. In this light, the structure and targetability
of the JAK pseudokinases are discussed, in conjunction with the
state of development of ligands that bind to these domains (Grant
et al., 2023; Henry and Jorgensen, 2023).

The obvious technique for developing small-molecule JAK3
inhibitors is to target the JAK3 kinase domain’s catalytic ATP-
binding site (JH1). There have been numerous ATP-competitive
JAK3 inhibitors produced (Christy, 2020). Signals communicated

FIGURE 1
(A) Exploring the Intricacies of Cytokine Signaling: Unraveling Cellular Communication Pathways. (B) Heterodimers connect JAK kinases with
cytokine receptors.

Frontiers in Molecular Biosciences frontiersin.org03

Faris et al. 10.3389/fmolb.2024.1348277

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1348277


by the JAK3 protein affect the growth and maturation of types of
white blood cells known as T lymphocytes, B lymphocytes, and
natural killer cells, which are responsible for immune system
regulation. As a result, among the JAK kinases, JAK1 is the
primary activator of STAT3 phosphorylation and signaling (Tan
et al., 2015). The manner of inhibitor binding in JAK1 was
remarkably similar to that observed in JAK2, emphasizing the
difficulties in designing JAK-specific inhibitors that target the
ATP-binding site (Williams et al., 2009; Virtanen et al., 2023).
Nonetheless, variations in the ATP-binding sites of JAK1 and
JAK2 were observed, providing a foundation for the rational
design of JAK2- and JAK1-specific inhibitors (Le et al., 2023).

Tofacitinib was initially created as a JAK3 inhibitor to
prevent organ rejection, but additional research discovered
that it is also a powerful inhibitor of JAK1 and JAK2 (Tan
et al., 2015). Tofacitinib is a medication used to treat certain
autoimmune diseases, notably rheumatoid arthritis (X. Yang
et al., 2021). It belongs works by modulating the immune system
to reduce inflammation associated with these conditions
(Hosseini et al., 2020). Tofacitinib has been approved by
various regulatory agencies, including the Food and Drug
Administration (FDA) in the United States, for use in the
treatment of rheumatoid arthritis and other autoimmune
disorders (Mogul et al., 2019; Roskoski Jr, 2023).

To expedite the drug synthesis process and achieve the desired
target pathways, Computer-Aided Drug Design (CADD)
approaches are employed, utilizing potent and diverse
methodologies (Nascimento et al., 2022; Zhu et al., 2023).

Inmany instances, the preference for experimental techniques as
the superior option in molecular dynamics can be observed (Kukol,
2014). For instance, spectroscopy is employed to investigate bond

vibrations, and electrophysiology is utilized to scrutinize the opening
and closing of ion channels. Nonetheless, substantial progress has
been achieved in theoretical methods over the past few decades,
resulting in numerous domains where modeling and simulation
either offer a higher level of detail or are more efficient than
initiating a new experimental undertaking. Molecular docking,
endeavor revolves around the prediction of the structure (or
structures) of the intermolecular complex that arises from the
interaction of two or more molecules (Leach, 2001). The
utilization of docking is widespread for proposing the binding
modes of protein inhibitors. Most docking algorithms can
generate a substantial number of potential structures,
necessitating a method for scoring each structure to identify
those of utmost significance. Consequently, the ‘docking problem’

is primarily concerned with the generation and assessment of
plausible structures for intermolecular complexes.

Concerning this investigation, the 2D-QSAR, 3D
pharmacophore model was utilized and rigorously validated
through robust statistical methods, demonstrating its significant
efficacy in obtaining more potent inhibitors against JAK1 and JAK3
(Kapetanovic, 2008; Nascimento et al., 2022; Faris et al., 2023c). This
was achieved through screening an extensive database, which
included a collection of predicted compounds and natural
substances obtained from PubChem and ZINCData. Among the
compounds identified in this study, Baricitinib and Ruxolitinib
stood out as the JAK inhibitors, underscoring the importance of
the pharmacophore model in obtaining JAK inhibitors. However, in
subsequent investigations, new inhibitors were subject to a stringent
selection process involving docking studies and ADMET evaluation,
resulting in the removal of certain compounds from consideration.
This step was crucial in ensuring favorable pharmaceutical

FIGURE 2
JAKs inhibitors.
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properties. Molecular dynamics and MM/GBSA analyses were
employed to confirm the stability of these molecules, as they
exhibited potent affinities, indicating robust binding. In this
comparative study, Tofacitinib was used as a reference, given its
established efficacy in the treatment of rheumatoid arthritis. In the
identification of molecules, a notable observation is the prevalence
of compounds featuring a pyrazole-pyrimidine chain. This
observation aligns with previous studies, reinforcing the pivotal
role played by such molecules in the inhibition of JAKs. The
consistent recurrence of this structural motif underscores its
significance in influencing the binding affinity and inhibitory
potential of compounds targeting JAK proteins. This finding
adds valuable insights to the growing body of knowledge
supporting the design and development of effective JAK
inhibitors. The newly discovered inhibitors may represent
promising candidates for in vitro synthesis as inhibitors against
JAK1 and JAK3.

Methods and materials

Dataset

In this study, an ensemble of data was utilized based on previous
work involving Cyanamide-Based Janus Kinase 1 and 3 (JAK1,
JAK3) compounds (Casimiro-Garcia et al., 2018). The objective was
to evaluate the inhibitory activity of these compounds against the
target kinases. The dataset comprised 28 molecules, and the
inhibitory activity of each molecule was experimentally measured
in terms of IC50, expressed in nanomolar (nM) units. To facilitate
result comparison and analysis, the IC50 values were converted to
pIC50 using the formula -log (IC50 * 10–9). The obtained pIC50

values for each molecule were recorded (See the Supplementary
Table S1). The pIC50 essentially represents the inhibitory activity of
each compound, with higher values indicating greater inhibitory
activity. These were further utilized to develop pharmacophore
models. For the implementation of the 2D-QSAR model, the
molecules were divided into 23 compounds for the training set
and 5 for the test set.

Calculation and selection of molecular
descriptors

Initially, the SMILES representations of the examined compounds
underwent conversion into Structure Data File (SDF) format.
Subsequently, the SDF files were submitted to the PaDel software
for (Yap, 2011) the computation of 1D, 2D, and 3D molecular
descriptors, employing the MM2 force field for minimization. A
comprehensive set of 1135 molecular descriptors were then quantified.

Model development

In this investigation, four distinct modeling approaches—namely,
Multiple Linear Regression (MLR), and ANN were employed to
scrutinize the relationship between the molecular structure and the
activity of the compounds under examination. For these models,

criteria indicative of predictive and statistically acceptable models
included a substantial F-value (F> 0.33), a determination coefficient
(R2), a mean squared error (MSE), an adjusted coefficient (R2

adj), a
lower BIC (Bayes information criterion), a higher R2, an increased
post-probability, and a significance level (p-value) less than or equal to
5% (Faris et al., 2023a)

R2
cu � 1 − ∑n

i−1 Yabs − Ycal( )2
∑n

i�1 Ypas − �Ycal( )2, (1)

R2
adj �

n − 1( ) × R2 − p

n − 1 − p
, (2)

MSE � 1
n
∑n

i�1 Yobs − Ycal( )2, (3)

F � ∑ Ycal − �Ymean( )2∑ Yabs − �Ycal( )2 ×
n − p − 1

p
, (4)

Yobs represent the observed values, �Ycal signifies the predicted
response values, and �Ycal denotes the average value derived from
either observed or predicted data. The variable p refers to the
number of explanatory variables, while n stands for the total
number of compounds in the dataset.

MLR

Due to its reliability and simplicity, the MLR approach is commonly
utilized in Quantitative Structure-Activity Relationship (QSAR) research
for the identification of molecular descriptors (Roy et al., 2016). The
foundational premise ofMLR lies in the notion that the biological activity
of JAKs inhibition (expressed as pIC50) is linearly associated with a
specific set of molecular descriptors, as depicted by the equation in Eq. 6.

Y � a0 +∑n

i�1 aiXi( ), (5)

where n signifies the number of molecular descriptors,Xi represents
individual molecular descriptors, Y denotes the predicted biological
activity, a0 stands for the constant term in Eq. 6, and ai represents the
coefficients associated with the respective molecular descriptors.

ANN

The nonlinear modeling approach known as ANN, comprising an
input layer, one or more hidden layers, and an output layer, has found
extensive application in QSAR research (Prado-Prado et al., 2010). In
this study, we constructed aQSARmodel utilizing theANN technique to
validate the precision of the pIC50 values obtained from preceding
models. The employed configuration involved the use of sigmoid as
the hidden layer transfer function, and trainingwas executed through the
scaled conjugate gradient algorithm employing a feed-forward method
(Figure 3). The pIC50 experiment served as the output layer,
encompassing the predicted pIC50 activity levels. The input layer
consisted of a neuron set equal to or less than the number of
molecular descriptors selected by the Multiple Linear Regression
model. Striking a balance in the number of hidden layers is crucial,
as an excess leads to overfitting, while too few compromises fault
tolerance and generalizability. Consequently, the outlined strategy led
to the implementation of a 4–3–1 network design in the present
investigation.
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Internal validation

The QSAR models generated by MLR and ANN were internally
validated using leave-one-out cross-validation (LOOCV) as the
chosen method. The R2cv coefficient value was computed using
Eq. 10. A criterion for model predictiveness was established, where
an R2

cu exceeding 0.5 was considered indicative of a reliable predictive
model. This threshold suggests that the internal predictions made by
the model are accurate (Golbraikh and Tropsha, 2002).

R2
cv � 1 − ∑ Ycde train( ) − Ycal train( )( )2∑ Ycis train( ) − �Ycol train( )( )2 . (6)

where Yobs (train) observed value, Ycal(train) the Loo-cv response
prediction value, and �Ycal(train) denotes the average value of the
observed or predicted data.

External validation

The QSARmodels developed for predicting the activities of the
compounds in the test set were utilized for external validation. The
assessment of external validation involved calculating the
coefficient R2

test , which represents the correlation between the
actual pIC50 values and the predicted pIC50 values after
incorporating the test set. The external predictive capability of
the QSAR models in forecasting the activity of the test set
compounds was gauged through this coefficient. To evaluate the
efficacy of R2

test in external validation, the criteria outlined by
Golbraikh and Tropsha were applied (Golbraikh and Tropsha,
2002). Hence the if R2

test exceeds 0.5, the model is considered
statistically robust for prediction and is deemed suitable for
application with new external data (Hadni and Elhallaoui, 2020;
Aouidate et al., 2021) (Table 1).

FIGURE 3
Neural network Architecture for molecular activity prediction with a 4-2 Configuration: Descriptor input, 2 neuron hidden layer, and activity output.

TABLE 1 Model evaluation criteria.

Parameter Formula Threshold value

Q2

Q2 � 1 − ∑(Ypred(test)−Y(test))2∑(Y(test)−Y
tr
)2

>0.5

R2 The coefficient of determination for the graph of expected versus seen for the test set >0.6

|R2
0 − R′20| <0.3

r20 r2 at zero intercept

R′20 r’0
2 for the plot of observed against projected activity for the test set at zero intercept

R2−R2
0

R2
<0.1

R2−R′2
0

R2
<0.1

k The slope of the plot of observed v/s projected activity at the intercept 0.85 < k < 1.15

k’ 0.85 < k’ < 1.15
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Y-randomization test

In this analysis, the Y-randomization test was employed to
eliminate the possibility of a random correlation between
molecular descriptors and the biological activities of the
compounds under investigation. The data was divided into a
training set and a test set, with the training set utilized for
conducting the Y-randomization test (Rücker et al., 2007). The
Y-randomization test establishes the validity of the QSAR model by
comparing the average random correlation coefficient (R2

r ) derived
from randomized models to the correlation coefficient of the
original non-random model, which includes the Multiple Linear
Regression (MLR), and Artificial Neural Network (ANN). If R2

r of
randomization model is less than R2

r and cR2
p exceeds 0.5, the

Y-randomization test indicates that the QSAR model is valid and
not a result of random chance (Roy and Mitra, 2011).

cR2
p � R*

������������������
R2 − average Rrand( )2√

, (7)

DoA

Defining the DoA of QSAR models is imperative as compounds
falling outside this domain may not be considered reliable for
prediction. In this study, the reliability of predicting the activities of
the examined compounds by DoA models, utilizing leverage values
(hi � xT

i (XTX)−1xi), with (i � 1, 2, . . . , n), for each compound, xi
represents a vector describing the compound, X is the matrix of K
descriptor values of the model for n × (K-1) compounds in the training
set, and the exponent. T denotes matrix/vector transposition
(Gramatica, 2007), was assessed. The Williams plot, utilizing pIC50

and descriptors in the training and test sets specifically chosen for the
MLRmodel, was employed to calculate the applicability domain within
a rectangular area and the degree of leverage h*(h* � 3 × (k+1)

n ), with k
specified descriptors in the model and n specified compounds in the
training set (Netzeva et al., 2005). A compound is considered outside the
application range if its leverage effect (h) surpasses its alert leverage (j),
indicating a negative impact on the established model.

Drug likeness and ADMET prediction

In this study, drug-likeness was employed to identify compounds
suitable for medicinal use, adhering to three critical principles: Lipinski’s,
Veber’s, and Igan’s. Additionally, properties related to the central nervous
system (CNS), such as the number of rotatable bonds (n-ROTB), blood-
brain barrier (BBB) permeability, P-glycoprotein substrate status, and
topological polar surface area (TPSA), were considered for assessing the
characteristics of the studied compounds. The SwissADME web tool
(Swiss Institute of Bioinformatics, Switzerland) was utilized for the
analysis of drug-like properties (Azzam, 2023). Subsequently, the
AdmetSAR 1.0 online program (Cheng et al., 2012), was employed to
evaluate the Absorption, Distribution, Metabolism, Excretion, and
Toxicity (ADMET) properties of the investigated compounds (Cheng
et al., 2012). Parameters such as human intestinal absorption (HIA),
Caco-2 permeability, aqueous solubility (LogS), and subcellular
localization were assessed for absorption and distribution. The

metabolism aspect involved an examination of common cytochrome
P450 isoforms (e.g., CYP1A1, CYP2D6, CYP2C19, CYP3A4, etc.).
Toxicological factors, including Salmonella/microsome (AMES)
toxicity, biodegradation, carcinogenicity, fish toxicity (pLC50, mg/L),
Tetrahymena pyriformis toxicity (pIGC50, ug/L), acute oral toxicity, and
rat acute toxicity (LD50, mol/kg), were also considered.

Biological activities (BA)

For a more in-depth exploration of the biological activities of the
studied compounds, PASS online employed the Way2Drug server web
tool. Utilizing PASS online, the biological roles, mechanisms of activity,
and potential therapeutic effects of the compounds were elucidated. The
platform predicts over 4,000 different types of biological activity by
examining structure-activity relationships within approximately
250,000 physiologically active compounds, spanning prescription
medicines, therapeutic candidates, hazardous chemicals, and drug
leads (Lagunin et al., 2000). Upon submitting the selected compounds
to PASS online, the platform assessed the likelihood of various
therapeutic effects, such as cholinergic, antioxidant, anti-inflammatory,
etc., using probable activity (Pa, probability to be active). Pa values,
denoting the percentage likelihood of activity, ranged from 0.0001 to
1.000. This facilitated the identification and quantification of potential
therapeutic effects associated with the studied compounds.

Pharmacophore hypothesis

The pharmacophore hypothesis, a well-established framework in
pharmaceutical chemistry, is pivotal for the identification and
modeling of critical interactions between a drug molecule and its
biological target. This concept is underpinned by the understanding
that specific structural or chemical features of a molecule hold
significant sway over its biological activity (Yang et al., 2010; Faris
et al., 2023c). The advanced Schrödinger software, in its 2021 iteration,
equips researchers with sophisticated tools for crafting and validating
pharmacophore hypotheses. These tools harness insights into
molecular interactions, encompassing hydrogen bonds, electrostatic
interactions, and hydrophobic interactions (Mali et al., 2022).

In the context of pharmacophore modeling, ligand chemistry
underwent meticulous normalization and extrapolation through the
automated PHASE process. This approach aligns ligands based on
their optimal arrangement and shared properties, as exemplified in
Figures 4, 5. Subsequently, these rigorously prepared ligands were
incorporated into the Maestro workspace (Schrödinger Release 2021–1;
Maestro, Schrödinger, LLC: New York, NY, USA, 2021). Their
experimental binding affinities, expressed as pIC50 values, were
instrumental in classifying compounds as either active or inactive.
An active compound met the criteria of a pIC50 value exceeding 6.5,
while inactivity was associated with a binding affinity exceeding 10 µM
or a pIC50 value below 6.5. To ensure meaningful matches, the
assumption requirement necessitated a minimum of 50% of active
compounds to bemet, with a preference for aminimum of five features
for a successful match. Most assumption criteria retained their default
settings, except for donor and negative molecules, where ionic features
were assigned a value of 1 to guarantee compatibility between acceptor
and negative features.
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Molecular docking

Preparation of compounds
The compounds employed in the pharmacophore model and

molecular docking process are constructed as SMILES

representations. The Ligpred function within Maestro is
utilized to transform these representations from a two-
dimensional (2D) format to a three-dimensional (3D),
followed by preprocessing of the molecular structures. This
procedure further encompasses the generation of multiple

FIGURE 4
(A) Plots of MLR models. (B) Principal Component Analysis (PCA) Plots for Descriptors and Molecules in a Series Study.
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poses for each structure. This comprehensive function not only
facilitates the conversion to 3D but also ensures the structural
readiness for subsequent docking simulations (Alamri et al.,
2021; Faris et al., 2023c).

Docking software
The computational data about the compounds were obtained

through in silico techniques using the Maestro and AutoDock Vina
software applications, both of which were accessed through the DIA-
DB platform (http://bio-hpc.eu/software/dia-db/). Maestro, a
software product developed by Schrödinger, utilizes the Glide
scoring function, which systematically assesses a wide array of
interactions within the ligand-protein complex while
simultaneously mitigating any steric hindrances, ultimately
yielding docking scores [26]. On the other hand, AutoDock Vina
employs an empirical scoring function that primarily takes into
consideration simple contact terms and the influences of lipophilic
and metal-ligand interactions within the ligand-protein complex to

estimate the Gibbs free binding energy between the ligand and
the protein [5,6].

Preparation of enzymes
The crystallographic data for the enzymes, namely, JAK1 (PDB

ID: 3EYG) and JAK3 (PDB ID: 3LXK), as well as for the JAK3-
selective inhibitor Tofacitinib, were procured through the Maestro
software platform. Furthermore, for the Tofacitinib inhibitor, the
PDB ID 4Z16, previously employed in prior research, was utilized.
In the subsequent preparation steps, the protein preparation wizard
within Maestro was employed to render the enzymes amenable to
molecular docking (Manual, n. d.; Schrödinger Release 2021–1;
Maestro, Schrödinger, LLC: New York, NY, USA, 2021). This
process entailed the removal of all cofactors and water molecules,
followed by structural optimization. The wizard effectively
addressed any structural anomalies, ensuring that the enzyme
structures were optimally configured for subsequent structural-
based virtual screening (Faris et al., 2023b).

FIGURE 5
(A) Plot ANN models developed for both JAK1 and JAK3. (B) The William plot of AD.
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Protein-ligand interaction
Two essential components are required in the docking process:

the grid file and the ligand file. To generate the grid file, the receptor
grid generation tool within Maestro was utilized, employing the
default parameters. Subsequently, protein docking was conducted
employing the glide HTVS method (Alamri et al., 2021), where the
prepared ligands were docked against the previously generated grid
files specific to JAK1 and JAK3. The docking score is a relative
measure corresponding to the change in Gibbs free energy (ΔG)
associated with the interaction between the protein and the
compound. A more negative docking score signifies increased
stability, indicating a stronger binding affinity of the compound
to the protein. The assessment of ΔG is influenced by various
interactions within the protein-compound complex,
encompassing hydrophobic interactions and hydrogen bonds
among others.

Molecular dynamics
Molecular dynamics (MD) simulations were conducted using

the GROMACS MD engine. Input files for these simulations were
meticulously constructed with the assistance of CHARMM-GUI
{Citation}, employing the CHARMM36 force field to dictate the
system’s behavior (Jo et al., 2008; Huang and MacKerell Jr, 2013).
The system was encapsulated within a cubic box and hydrated
utilizing the TIP3P water model, with an added 10 Å buffer zone.
NaCl salt molecules were introduced at a concentration of 0.15 M to
maintain electrostatic neutrality, their placement was guided by the
Monte Carlo method (Underwood and Greenwell, 2018; Yagasaki
et al., 2020). The system’s energy was meticulously minimized over
250,000 steps via a gradient descent method. Following the energy
minimization, the system underwent a crucial equilibration phase,
residing in a constant atom number, volume, and temperature
(NVT) ensemble at a controlled temperature of 310 K for a
substantial 50 nanoseconds. Subsequently, the system embarked
on unrestricted MD simulations spanning 100 nanoseconds,
adhering to a constant number of atoms, pressure, and
temperature (NPT) ensemble, with temperature and pressure set
at 310 K and 1 atm, respectively. Trajectory analysis of the MD
simulations was carried out using the sophisticated Visual Molecular
Dynamics (VMD) software, specifically its 2020 version. In the
context of the molecular dynamics (MD) simulations involving
Tofacitinib and its interaction with the JAK3 target, it is
important to note that the details of this specific MD simulation
were introduced in a previous research endeavor. This previous
work provides a comprehensive account of the methodology and
parameters used for the MD simulation involving Tofacitinib and
JAK3, thus serving as a foundational reference for the current study
(Faris et al., 2023c). This in-depth analysis was pivotal in
scrutinizing the system’s stability and deriving crucial parameters,
including but not limited to the root-mean-square deviation
(RMSD), root-mean-square fluctuation (RMSF), radius of
gyration (RoG), protein solvent-accessible surface area (SASA),
hydrogen bond interactions, and Principal Component Analysis
(PCA) (Barz et al., 2019).

Fel and PCA
Biomolecular processes, such as molecular folding or aggregation,

can be elucidated by considering the molecule’s free energy. In this

context, the Boltzmann constant (kB) plays a pivotal role, with the
probability distribution of the molecular system along a specific
coordinate, denoted as R, being represented by P. Pmax signifies the
maximum probability within this distribution, and its subtraction
ensures that δG (the change in Gibbs free energy) equals zero at the
lowest free energy minimum. ΔG(R) � −kBT[lnP(R) − lnPmax]. A
selection of commonly employed order parameters for R includes the
rootmean square deviation (RMSD), radius of gyration (Rgyr), count of
hydrogen bonds, native contacts, and principal components. These
order parameters serve as the basis for plotting the free energy, resulting
in a reduced free energy surface (FES) when considering two of them
simultaneously. Principal component analysis (PCA), alternatively
referred to as covariance analysis or essential dynamics analysis,
shares commonalities with clustering techniques, as it aids in the
discernment of significant features within extensive molecular
trajectories. PCA, however, specializes in the identification of the
most pronounced motions occurring within the system.

RMSD and RMSF
The Root Mean Square Deviation (RMSD) for specific atoms

within a molecule concerning a reference structure, denoted, is
computed as follows (Nicosia and Stracquadanio, 2008):

RMSD t( ) � 1
M
∑N

i�1 mi ri t( ) − rrefi

∣∣∣∣ ∣∣∣∣2[ ] 1
2, (8)

where M = Σi mi and ri (t) is the position of atom i at time t after
least square fitting the structure to the reference structure.

The Root Mean Square Fluctuation (RMSF) serves as a metric
for quantifying the disparity between the position of a particle,
denoted as i, and a designated reference position (Islam et al., 2021):

RMSFi � 1
T
∑T

tj�1 ri tj( ) − rrefi

∣∣∣∣∣ ∣∣∣∣∣2[ ]1/2, (9)

where T is the time over which one wants to average, and ref is the
reference position of particle i. This reference position will be the
time-averaged position of the same particle i.

The difference between RMSD and RMSF is that the latter is
averaged over time, giving a value for each particle i, while for the
RMSD the average is taken over the particles, giving time-specific
values (Loschwitz et al., 2023, p. 2).

Hbonds, RoG, and SASA
Hydrogen bond analysis is the examination of interactions between

a protein and a ligand within a 3.5-angstrom cutoff distance (da Fonseca
et al., 2023; Yekeen et al., 2023). This analysis involves the identification
of hydrogen bonds, which are crucial for the structural stability and
molecular recognition within proteins. The core structural elements of
proteins, such as α-helices and β-sheets, are stabilized by hydrogen bonds
formed between the main chain carbonyl oxygen and amide nitrogen.
These hydrogen bonds are responsible for conferring structural rigidity
and specificity to intermolecular interactions. In this analysis, hydrogen
bonds are defined as interactions in which an electronegative atom
(acceptor A) interacts with a hydrogen atom covalently bonded to
another electronegative atom (donor D). The criterion for a hydrogen
bond entails less than 3.5 angstroms between the hydrogen atom (D) and
the acceptor atom (A), as well as an angle (D-H-A) falling within the
range of 150–210°. By this method, hydrogen bond interactions between
the protein and ligand can be identified and characterized, revealing their
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significance in the context of molecular recognition and structural
stability. RoG is an indicator of the compactness or overall size of a
molecular structure. It is determined using the following formula (da
Fonseca et al., 2023):

Rg � ∑i ri| |2mi∑i mi
( )1/2

, (10)

Where mi is the mass of atom i and ri the position of atom i
concerning the center of mass of the molecule.

SASA is a measure that quantifies the surface area of a molecule
or group of molecules that is accessible to a solvent, typically water.
It is determined by defining a probe radius (often the van der Waals
radius of water) and calculating the area that can be explored by this
probe radius around the molecule or groups of interest while
avoiding any overlap with atoms. Ultimately, SASA assesses the
region of the molecule that is in contact with the solvent and can
thus interact with other surrounding molecules.

MM/GBSA
Determining the binding strength between receptors and small

ligands relies on assessing binding free energy. In this research, we
employed themolecular mechanics/generalized Born surface area (MM/
GBSA) method, utilizing the AMBER 14 software, to compute the
binding free energy (Ylilauri and Pentikäinen, 2013; Kumari et al., 2014).
The computation encompassed various components, including
ΔVDWAALS, ΔEEL, ΔEGB, ΔESURF, ΔGGAS, ΔGSOLV, and ΔTOTAL. The
specific equations applied in this study for these calculations were
outlined in a previous research publication (Faris et al., 2023c; Faris
et al., 2023d).

ADMET

To assess ADMET properties (Absorption, Distribution,
Metabolism, Excretion, Toxicity) and drug-likeness, we utilized two
specific web servers. The first, pkCSM (Pires et al., 2015; Azzam, 2023),
was effectively employed to generate signatures encompassing five
distinct pharmacokinetic property classes, facilitating the development
of predictive models through regression and classification. Our findings
demonstrate that pkCSMperforms comparably or even superior to other
freely available methods for various pharmacokinetic properties. The
second server, SWISS-ADME (En-nahli et al., 2022; Azzam, 2023),
served the purpose of computing physicochemical descriptors and
predicting ADME parameters, pharmacokinetic properties, drug-like
characteristics, and suitability for medicinal chemistry of one or multiple
small molecules, providing valuable support for drug discovery.

Results

2D-QSAR

MLR analysis
Among the objectives of the QSAR study is to understand the

relationship between descriptors and their connection to biological
activity. This enables the design of inhibitory molecules with
favorable pharmaceutical characteristics and good stability. In

this study, our target enzymes are JAK3 and JAK1, which are
important for the autoimmune system. Based on a utilized
dataset, we initially developed the MLR model. The model was
derived utilizing the MLRmethodology for studying the compounds
with the pIC50 of JAK1 and JAK3, as illustrated by the following
equations, respectively.

pIC50 JAK1( ) � 6.217 – 0.0025*ATS7e + 51.964*VC – 6

+ 0.4343*nHssNH + 0.2803*minHBint8, (11)

where R2 � 0.95, R2adj � 0.93, R2-R2adj � 0.01, RMSE � 0.13,
MAE � 0.11, s � 0.15, F � 85.56

pIC50 JAK3( ) � -6.8736 + 0.0497*ATSC7i + 0.0874*VE3Dzp

+ 4.5166*SpMax5Bhp + 0.0945 + slogPVSA0,

(12)
where R2 � 0.91, R2adj � 0.89, R2-R2adj � 0.01, RMSE � 0.25,
MAE � 0.11 s � 0.28, F � 46.34, 85.56

These models encompass both 4 crucial molecular descriptors
for JAK1 and JAK3, which account for approximately 95% and 90%
of the variations in pIC50, respectively (Figure 4). The observations
indicate that all parameters (R2 (>0.6), MSE (a low value), F (a high
value), and p-value (<0.05)) meet the statistically acceptable criteria.
For the next, the results from internal and external validation will
determine whether the models predict favorably or not.

Interpretation of descriptors

The descriptors in the equations of models predicted have
positive and negative coefficients, signifying their positive or
negative contributions to the increase in pIC50 values. Molecules
with specific features represented by these descriptors exhibit
different inhibitory activities on JAK1 and JAK3. The coefficients
and descriptor values can assist in designing molecules with targeted
JAK inhibition as follows (Figure 5A):

Equation 1, which emphasizes the JAK1 series along with their
corresponding pIC50 values: The negative coefficient (−0.0025)
associated with ATS7e suggests that an increase in the value of
ATS7e corresponds to a decrease in pIC50. This implies that
molecules featuring specific characteristics represented by ATS7e
may exhibit weaker inhibitory activity on JAK1. VC-6, on the other
hand, has a positive coefficient (51.964). As VC-6 values increase, so
does pIC50, indicating that molecules with higher VC-6 values tend
to display higher inhibitory activity on JAK1. Regarding nHssNH, its
positive coefficient (0.4343) suggests that molecules with a greater
abundance of nHssNH are likely to have higher inhibitory activity
on JAK1. Similarly, minHBint8, another molecular structure
descriptor, has a positive coefficient (0.2803), indicating that
molecules with more minHBint8 are prone to be more active on
JAK1. For ATSC7i, the positive coefficient (0.0497) implies that an
increase in the value of ATSC7i corresponds to a higher pIC50 for
JAK3. This indicates that molecules with specific features
represented by ATSC7i exhibit increased inhibitory activity on
JAK3. Similarly, VE3_Dzp has a positive coefficient (0.0874),
suggesting that molecules with higher VE3_Dzp values are more
active on JAK3. As for SpMax5_Bhp, it demonstrates a significantly
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positive coefficient (4.5166), signifying those molecules with features
represented by SpMax5_Bhp display notably higher inhibitory
activity on JAK3. Additionally, slogPVSA0, with a positive
coefficient of 0.0945, suggests that molecules with higher values
of slogPVSA0 are more active on JAK3.

The Correlation Matrix for JAK1 provides the following
insights: ATS7e and VC-6 display minimal correlations with the
other descriptors. In contrast, nHssNH demonstrates a moderately
positive correlation with minHBint8, implying a distinct
relationship between these two descriptors. Notably,
MinHBint8 exhibits a moderately negative correlation with
nHssNH. The matrix predominantly underscores the presence of
weak correlations, except for the moderate association between
nHssNH and minHBint8 (Table 2).

In the CorrelationMatrix for JAK3, we observe that ATSC7i and
VE3_Dzp showcase weak correlations with the remaining
descriptors. SpMax5_Bhp reveals limited correlations with the
other descriptors, except for a moderately negative correlation
with slogPVSA0. Intriguingly, SlogPVSA0 demonstrates
moderately negative correlations with VE3_Dzp and SpMax5_
Bhp, along with a moderately positive correlation with nHssNH.
Overall, the matrix predominantly emphasizes weak correlations,
with notable exceptions being the mentioned moderate
relationships.

The correlation matrices for JAK1 and JAK3 primarily
emphasize the existence of weak correlations among the
descriptors, except for a few specific moderate associations. This
underscores that these descriptors offer complementary information
for predicting the activities of these targets, even in the presence of
limited inter-descriptor correlations (Table 3).

ANN model

In the search for a model capable of reliably predicting pIC50, we
proceeded to develop the ANN model. The advantages of using
ANN in QSAR include handling non-linear and complex data,
automatic extraction of features from raw data, reduced
experimental bias, flexibility with diverse data types, robustness
against noise and outliers, the ability to predict various biological
activities, easy interpretation through contribution analysis

algorithms, and simple maintenance with the ability to update
the model with new data.

SAR models developed using the ANN method exhibit high R2

(R2 = 0.99) andMSE (MSE = 0.03) values for JAK1, as well as high R2

(R2 = 0.97) and MSE (MSE = 0.05) values, like previous models.
Additionally, they demonstrate an R2cv value (R2cv = 0.85) for
JAK1 and R2cv value (R2cv = 0.80) for JAK3. These results indicate
that the QSAR model employing the ANN approach can be utilized
to predict the biological activity of the studied compounds. As
depicted in Figure 5A, the distribution of pIC50 values for the
studied compounds was highly similar in both datasets. This
implies that the ANN models can predict pIC50 values that
closely correspond to experimental values.

Interpretation of descriptors

The importance of understanding the descriptor description is
crucial for developing compound designs or identifying, judging,
and better comprehending the relationship between these
descriptors and activity. It also involves evaluating the
augmentation or diminution of their reactivity.

The results in Supplementary Table S1 are associated with the
internal validation of 2D-QSAR models for molecules targeting
JAK1 and JAK3. Q2 (loo), indicating predictive quality, is better
when closer to 1, with values around 0.9 (JAK1) and 0.8 (JAK3)
signifying strong predictive capacity. R2-Q2loo measures
observed variance, with low values like 0.0301 (JAK1) or
0.0801 (JAK3) indicating limited variance explained. RMSE
and MAE estimate average prediction error, with lower values
indicating higher model precision, although RMSE is lower for
JAK1. PRESS quantifies prediction error in cross-validation,
desiring lower values. CCC gauges the correlation between
predicted and observed values, favoring values close to 1.
JAK1 models show superior predictive performance over
JAK3, as per Q2 (loo) and RMSE criteria.

According to external validation for the 2D-QSAR models for
molecules targeting JAK1 and JAK3, the results presented in
Supplementary Table S2, showing a model performance with Q2

values exceeding 0.5, indicate strong predictive capabilities of
the models.

TABLE 2 Correlation matrix of descriptors for JAK1 and JAK3.

Descriptor of JAK1 ATS7e VC-6 nHssNH minHBint8

ATS7e 1

VC-6 0.065582 1

nHssNH 0.421076 0.230613 1

minHBint8 0.075777 −0.05149 −0.31699 1

Descriptor of JAK3 ATSC7i VE3_Dzp SpMax5_Bhp slogPVSA0

ATSC7i 1

VE3_Dzp 0.15599 1

SpMax5_Bhp −0.21115 −0.34598 1

slogPVSA0 −0.38598 −0.36545 0.577294 1
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DoA refers to the chemical/property space covered by
compounds in the training set used to build the QSAR model.
It is important for a model to make predictions only within its
defined DoA to ensure reliability. Compounds outside the DoA
may lead to extrapolation errors. Y-randomization tests whether
a model can discover true correlations or build random models.
It involves randomly permuting biological activity values and
checking if the permuted model has equal or better predictive
power. A test set disjoint from the training set allows for an
objective assessment of a model’s predictive ability within its
DoA, considering overfitting. Both external validation (test set)
and internal validation (e.g., leave-one-out/cross-validation) are
recommended to properly evaluate a QSAR model’s
performance. Ensuring the representativity and structural
diversity of compounds in the training/test sets helps define
the realistic boundaries of a model’s DoA. Proper DoA
description and test set validation are essential to avoid
overpredicted reliability and establish robust QSAR
relationships.

DoA analysis

The William plot depicting the AD of the models is
presented in Figure 5B. The AD of the 2D-QSAR models was
determined through leverage analysis, as represented by the
Williams plot. The results obtained from the Williams plot
demonstrate that all compound values in both the training
and test sets were below the warning leverage threshold (h* =
0.625) for both JAK1 and JAK3 models. Sensitivity in the
analysis of AD could be considered manageable or negligible
for molecules outside of AD. A slight sensitivity or variability is
demonstrated by the model with JAK1, with one outlier being
detected in the domain of applicability. However, a more
pronounced sensitivity is exhibited by the model with JAK3,
with three outliers being observed in the domain of applicability.
This suggests that a significant impact on the model’s
performance in specific scenarios within the domain of
applicability may be attributed to the presence of JAK3.

Y-randomization

To minimize the potential occurrence of fortuitously selecting a
strong association between molecular descriptors and pIC50, a
Y-randomization methodology was executed. In this examination,
a subset equivalent to twenty percent of the total compounds was
randomly evaluated with a consistent set of twelve descriptors. Three
measures (R2 r, R2

r, cv, cRp
2) were assessed and juxtaposed with the

original model. As illustrated in Table 4, the values of the three
measures for 10 randomly generated models were lower than those
of the original model, signifying the robustness of the original
model. In simpler terms, the original model did not exhibit any
incidental correlation between molecular descriptors and
biological activity.

Pharmacophore hypothesis analysis

Ligand-based technologies, such as 3D-pharmacophore
modeling, offer rapid screening of extensive compound databases,
making them valuable for quick assessments. Conversely, structure-
based approaches have the potential to generate a wider range of
active compounds and provide significant insights into the target.

All the compounds selected from the database were employed to
formulate a pharmacophoric hypothesis, delineating the essential
molecular features necessary for binding with a receptor. From a
pool of different pharmacophore hypotheses, we meticulously
assessed and identified the most promising ones, leveraging
various scoring criteria as elucidated in Supplementary Table S3,
4. Notably, we ascertained that the ADRRR hypothesis for JAK1 and
the ADHRR hypothesis for JAK3, both of which are detailed in
Supplementary Table S3, 4, emerged as the superior candidates
among the hypotheses generated using the PHASE module. This
determination was predicated on a comprehensive scoring function
encompassing multiple parameters enumerated in the tables. The
survival scoring function, crucial in the discernment of distinctive
features within the proposed models and the ranking of these
hypotheses, incorporated considerations such as selectivity, the
number of ligands matched, relative conformational energy, and

TABLE 3 Descriptors for molecular structure analysis.

Descriptor Type Description

VC-6 Valence cluster, order 6 ChiClusterDescriptor Measures the valence clustering tendency of atoms in a molecular structure

ATS7e AutocorrelationDescriptor Broto-Moreau autocorrelation of the topological structure at a lag of 7

ATSC7i Centered Broto-Moreau autocorrelation at a lag of 7, weighted by first
ionization potential and atomic Sanderson electronegativities

minHBint8 ElectrotopologicalStateAtom Minimum E-State descriptors of the strength for potential Hydrogen Bonds
of path length 8

TypeDescriptor nHssNH Count of atom-type H E-State: NH-

VE3_Dzp BaryszMatrixDescriptor Logarithmic coefficients sum of the last eigenvector from the Barysz matrix,
weighted by polarizabilities

Descriptor SpMax5_Bhp BurdenModifiedEigenvalues The largest absolute eigenvalue of the Burden modified matrix for n 5,
weighted by relative polarizabilities

slogPVSA0 - LogP value based on the Crippen method
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activity. Nonetheless, the models must possess the capability to
distinguish between inactive and active molecules. If an inactive
molecule garners a favorable score, it casts doubt on the validity of
the hypothesis, as it fails to effectively discriminate between active
and inactive compounds. Considering this, we introduced an
adjusted survival score, which is computed by subtracting the
score attributed to inactive molecules from the overall survival
score. The two models, ADRRR_1 for the JAK1 target and
ADHRR_1 for the JAK3 target are tools for predicting the
activity of molecules with these targets (Supplementary Table S3,
4). The scores of these models, particularly the Survival Score, are
critical measures of their ability to accurately predict the activity of
molecules. For the selection of models for each target based solely on
the Survival Score: JAK1 target: Model ADRRR_1 with a Survival
Score of 5.68. JAK3 target: Model ADHRR_1 with a Survival Score of
5.73. These choices are based on the highest Survival Scores for each
target, implying a better capability of these models to predict the
activity of molecules concerning their respective targets.

The characteristic features of each model for identifying
inhibitor molecules of JAK1 and JAK3 are as follows: ADRRR_1,
presents an acceptor and a donor, along with three aromatic rings.

For ADHRR_1, it features an acceptor, a donor, hydrophobic
properties, and two aromatic rings. Figure 6 depict the alignment
of active compounds for each target, including angles and
respective distances.

Pharmacophore hypothesis validation

Two pharmacophore models, ADRRR and ADHRR, were
assessed for their ability to discriminate between active
compounds and decoys (See the supplementary file for more
details). For ADRRR_1, the study encompassed 22 active
compounds and a total of 28 ligands, including actives and
decoys. The model displayed promising performance with a
perfect BEDROC score of 1 at alpha = 160.9, indicating ideal
active compound ranking. Additionally, the ROC value of
0.83 illustrated the model’s strong discriminatory power, while a
Relative Enrichment Index (RIE) of 1.27 highlighted its capacity to
effectively enrich activities. The area under the accumulation curve
was 0.57, reflecting the model’s proficiency in prioritizing activities.
In the top 20% of decoy results, a notable 31.8% of actives were

TABLE 4 Y-randomization for each model with JAK1 and JAK3 activities.

Model/JAK1 R R2 Q2 Random models parameters

Original 0.94 0.88 0.33 Average r 0.54

Random 1 0.35 0.12 −0.93 Average r2 0.31

Random 2 0.58 0.33 −0.51 Average Q2 −0.81

Random 3 0.46 0.21 −0.73 cRp2 0.72

Random 4 0.35 0.12 −0.58

Random 5 0.70 0.49 −0.77

Random 6 0.60 0.36 −0.76

Random 7 0.64 0.40 −1.12

Random 8 0.44 0.19 −1.55

Random 9 0.60 0.36 −0.28

Random 10 0.74 0.55 −0.87

Model/JAK3 R R2 Q2 Random Models Parameters

Original 0.87 0.76 0.46 Average r 0.58

Random 1 0.61 0.38 −0.72 Average r2 0.35

Random 2 0.64 0.41 −0.20 Average Q2 −0.40

Random 3 0.35 0.12 −0.55 cRp2 0.57

Random 4 0.42 0.18 −0.57

Random 5 0.71 0.50 −0.02

Random 6 0.60 0.36 −0.67

Random 7 0.61 0.37 −0.63

Random 8 0.65 0.42 −0.22

Random 9 0.58 0.34 −0.33

Random 10 0.630479 0.397504 −0.10
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successfully retrieved, further underscoring the model’s efficacy.
Enrichment factors (EF) above 1.3 signified substantial
enrichment, and the list of ranked actives was provided for
comprehensive analysis. For ADHRR_1, the study involved
16 active compounds and 24 ligands in total. Like ADRRR_1,
ADHRR_1 achieved a perfect BEDROC score of 1 at alpha =
160.9, indicating an exceptional ranking of active compounds.
The ROC value of 0.75 demonstrated the model’s relatively
strong ability to differentiate between active compounds and
decoys. An RIE value of 1.34 highlighted the model’s effective
enrichment of actives. The area under the accumulation curve, at
0.58, indicated the model’s proficiency in prioritizing activities. In
the top 20% of decoy results, 12.5% of the actives were successfully
recovered. Enrichment factors exceeding 1 suggested significant
enrichment. Additionally, the model provided a list of ranked
actives, facilitating in-depth analysis and experimental validation.

The pharmacophore models both exhibit strong performance in
distinguishing between active compounds and decoys. They
showcase high BEDROC scores, robust ROC values, and
impressive enrichment factors, underscoring their efficacy in
ranking active compounds. The ROC and Screen results in

Figure 7 illustrate the trend of these models to predict with high
accuracy the molecules with inhibitory activity, as observed in the
screening to identify Baricitinib and Ruxolitinib Drugs among
recent drug discoveries as JAK inhibitors. Furthermore, the
models yield lists of ranked actives, which are valuable for
subsequent analysis and experimental validation. These models
demonstrate promising capabilities in identifying potential
active compounds.

Screening of database

After the validation of the pharmacophore models, the ADRRR_
1 models were employed to identify selective inhibitors against
JAK1 and ADHRR_1 that are selective against JAK3. This was
achieved through screening a database containing JAK3 inhibitors,
both of synthetic and natural origin, to predict their presence in the
ZINCdata site as potential drug candidates. Table 5 showcases the
results of compounds displaying a notable similarity, as indicated by
their low RMSD values. All the molecules obtained undergo a
molecular docking process to eliminate those with low binding

FIGURE 6
(A) Pharmacophore-based Ligand Alignment for JAK1 and JAK3 Inhibition Hypothesis. (B) The distances and angles between the features ADRRR_
1 and ADHRR_1.
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affinity, thereby enhancing strong inhibitory activity. The molecules
selected for each target with high affinity are presented in Table 5.
These molecules have a predicted biological activity (pIC50) through
the utilization of developed QSAR models, as shown in Tables 6, 7.

Molecular docking is a computer-aided drug design technique
that evaluates how new molecules bind to a biological target for
drug discovery.

Molecular docking analyses, as indicated in Supplementary
Table S4 and illustrated in Figures 8, 9, demonstrate important
non-covalent interactions expressing different affinities among the
studied complexes.

Regarding the ZINC3843186_JAK1 complex (Figure 8), the
main interactions observed are hydrogen bonds, particularly
carbon-hydrogen bonds between the ligand and residues
Gly1020 and Asn1008. This suggests that hydrogen bonds play a
crucial role in ligand binding to the protein. An electrostatic Pi-
Anion interaction is formed between Asp1021 and the ligand,
indicating a specific electrostatic interaction. Another electrostatic
interaction is observed in the form of a Pi-Cation bond between
residue Lys908 and the ligand, suggesting a favorable electrostatic
interaction. Hydrophobic interactions of the Amide-Pi Stacked, Pi-
Alkyl, and Pi-Pi T-shaped types are also observed, indicating

significant contributions of hydrophobic interactions to binding.
The average distance between protein and ligand atoms ranges from
2.53 to 5.35 Å, indicating a range of distances for these interactions,
with the minimum distance between residue Gly1020 and the ligand
and the maximum distance between residue Leu1010 and the ligand.
Additionally, for the ZINC79189223_JAK3 complex (Figure 8), the
primary interactions consist of hydrogen bonds, including carbon-
hydrogen bonds, suggesting a strong involvement of hydrogen
bonds in ligand binding to the protein. There is also an
electrostatic Pi-Anion interaction between Asp967 and the ligand,
indicating an additional electrostatic interaction. Hydrophobic
interactions of Pi-Alkyl, Pi-Sigma, Alkyl, and Amide-Pi Stacked
types are also observed, suggesting significant contributions of
hydrophobic interactions to binding. The average distance
between protein and ligand atoms varies from 2.45 to 5.56 Å,
indicating a range of distances for these interactions.

Similarly, for the ZINC66252348_JAK1 complex (Figure 9), the
main interactions are hydrogen bonds, including carbon-hydrogen
bonds, indicating that hydrogen bonds are the predominant
interactions. Hydrophobic interactions of Pi-Alkyl, Alkyl, and Pi-
Sigma types are also observed, contributing to ligand binding. The
average distance between protein and ligand atoms varies from

FIGURE 7
Roc and Screen results plots.
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TABLE 5 The new identifier compounds targeting JAK1 and JAK3 with JAKInhibitorDB affinity.

Database type ID Smile Affinity (Kcal/mol)

Target JAK1

JAKInhibitorDB ZINC66252131 −7.92

ZINC13974878 −7.48

ZINC261104647 −7.77

ZINC96271468 −7.63

ZINC45288940 −7.35

ZINC66252348 −8.05

Target JAK3 mol S

JAKInhibitorDB Ruxolitinib −5.76

(Continued on following page)
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TABLE 5 (Continued) The new identifier compounds targeting JAK1 and JAK3 with JAKInhibitorDB affinity.

Database type ID Smile Affinity (Kcal/mol)

Baricitinib −6.76

ZINC96269459 −6.65

ZINC95576632 −8.23

ZINC101537469 −5.87

Target JAK1

NaturalProductDB ZINC79189223 −7.61

ZINC40413912 −6.90

ZINC38818041 −7.51

(Continued on following page)
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2.07 to 5.37 Å, showing a range of distances for these interactions.
For Complex ZINC66252131_JAK1 (Figure 9), the primary
interactions are hydrogen bonds, including carbon-hydrogen
bonds and Carbon Hydrogen Bond type, highlighting the
importance of hydrogen bonds. A Pi-Sigma-type interaction is
observed, indicating a specific electrostatic interaction. Pi-alkyl
hydrophobic interactions are also present, strengthening the
binding between the ligand and the protein. The average distance
between protein and ligand atoms ranges from 1.99 to 5.42 Å.

For Complex ZINC73069247_JAK3 (Figure 9), the main
interactions are hydrogen bonds, including carbon-hydrogen
bonds, underscoring the importance of hydrogen bonds in ligand
binding. There is an electrostatic Pi-Anion interaction between
Asp967 and the ligand, indicating a specific electrostatic

interaction. Hydrophobic interactions of Pi-Alkyl, Pi-Sigma,
Amide-Pi Stacked, and Alkyl types are also observed,
demonstrating the significance of hydrophobic interactions. The
average vary between protein and ligand atoms varies from 2.67 to
5.38 Å, showing a range of distances for these interactions. For
Complex ZINC79189223 _JAK3 (Figure 9), the primary interactions
are hydrogen bonds, including carbon-hydrogen bonds, indicating
the importance of hydrogen bonds in ligand binding. There is an
electrostatic Pi-Anion interaction between Asp967 and the ligand,
highlighting a specific electrostatic interaction. Pi-alkyl and Pi-
Sulfur hydrophobic interactions are also observed, showing that
hydrophobic interactions are a key factor in binding. The average
distance between protein and ligand atoms ranges from 2.34 to
5.53 Å, indicating a range of distances for these interactions.

TABLE 5 (Continued) The new identifier compounds targeting JAK1 and JAK3 with JAKInhibitorDB affinity.

Database type ID Smile Affinity (Kcal/mol)

Target JAK3

NaturalProductDB ZINC3843186 −7.02

ZINC95579616 −6.89

ZINC3839141 −6.99

Tofacitinib-Drug −7.50

Target

JAK1 A1 −5.31

JAK3 A2 −9.26

Bold values are indicators based on ZINC data that were known from the first term ZINC.
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The newly designed compounds demonstrate non-covalent
interactions in the following manner: In the case of compound
A1 with JAK1, there is a hydrogen bond, along with pi-alkyl and
pi-sigma interactions with Leu88, a pi-alkyl interaction with
Val889, and a pi-sigma and alkyl interaction with Leu1010.

Regarding compound A2 with JAK3, it features four
hydrogen bonds with Cys909, Lys830, Arg911, and Leu828, as
well as pi-alkyl and pi-sigma interactions with Cys909, a pi-alkyl
interaction with Leu956, and another pi-alkyl interaction with
Leu828. Additionally, there are two pi-alkyl interactions with

TABLE 6 Molecules selected with the best affinity binding (Kcal/mol).

ZINC3843186 (JAK3)/pIC50 (pred) = 7.07 ZINC79189223 (JAK1)/pIC50 (pred) = 7.60

ZINC66252348 (JAK3)/pIC50 (pred) = 7.93 ZINC66252131 (JAK1)/pIC50 (pred) = 7.62

ZINC73069247 (JAK3) (Baricitinib)/pIC50 (pred) = 7.79 ZINC95576632 (JAK3)/pIC50 (pred) = 5.30

A1/pIC50 (pred) = 7.42 A2/pIC50 (pred) = 7.94

TABLE 7 MM/GBSA energy components for selected compounds.

MM/
GBSA

ZINC3843186 ZINC79189223 ZINC66252348 ZINC66252131 Baricitinib ZINC95576632 Tofacitinib

ΔVDWAALS −37.44 −33.42 −37 −35.3 −43.9 −46.35 −22.82

ΔEEL −30 −15.5 −25.01 −36.1 −25.2 −29.68 −32.93

ΔEGB 43.19 28.4 41.36 57.25 45 54 55.89

ΔESURF −4.97 −4.63 −5.09 −5.26 −5.44 −5.88 −3.34

ΔGGAS −67.44 −48.92 −62.01 −71.39 −69.1 −76.03 −55.75

ΔGSOLV 38.22 23.77 36.27 52 39.56 48.13 52.55

ΔTOTAL −29.22 −25.15 −25.74 −19.4 −29.55 −27.9 −3.2
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Ala853, a hydrogen bond with Arg953 and Ala966, and a pi-
sulfur interaction with Met902.

In addition, for the molecules in the series, we also consider
molecular dynamics, selecting the molecules known for high activity
in each series. For JAK1, A1 molecule 23 in Supplementary Table S1
with a pIC50 of 7.24 is chosen, and for JAK3, in Supplementary Table
S1 A2, molecule 32 with a pIC50 of 7.96 is selected (Figure 9). These
selections are crucial for understanding the molecular structures
associated with high biological activity and guide our exploration of
molecular interactions at the atomic level.

Molecular docking analysis revealed important non-covalent
interactions between newly designed compounds and their
biological targets. Hydrogen bonds, electrostatic interactions, and
hydrophobic interactions were found to play significant roles in
ligand binding. These findings provide valuable insights into the

molecular structures and interactions underlying high biological
activity, aiding in the development of potential drug candidates.
Molecular dynamics simulations further supported the selection of
promising molecules with high activity, enhancing our
understanding of atomic-level interactions.

The most active compounds in the studied
series for JAK1 and JAK3

In the interaction between A1 and JAK1, hydrogen bonding
takes center stage, with residues such as CYS909, ARG911, LEU828,
LYS830, and others forming bonds at different distances. Notably,
GLY908 engages in both carbon-hydrogen bonds and halogen
interactions, demonstrating a multifaceted connection with the
ligand. Furthermore, Pi-Sigma interactions involving
VAL836 and CYS909 underscore the significance of pi
interactions in the binding process. The A1-JAK1 complex
exhibits Pi-Sulfur, Alkyl, and Pi-Alkyl interactions at various
distances, highlighting the intricate nature of the binding
interactions. In contrast, in the context of A2 with JAK3,
hydrogen bonds form between LEU881 and ARG1007,
emphasizing the importance of this interaction type. Pi-Sigma
interactions involving LEU881 and LEU1010 contribute to the
binding affinity at distances reflecting spatial proximity. Alkyl
and Pi-Alkyl interactions, observed at varying distances with
residues like LEU881, VAL889, and LEU1010, further enhance
the stability of the A2-JAK3 complex.

A note on the interactions between ZINC66252348 and
ZINC73069247 (Baricitinib) in Figures 8, 9 with the target
proteins shows the presence of unfavorable bonds, suggesting
repulsive interactions that favor instability in the active pocket.
However, despite the instability, their stability is maintained in the
presence of hydrogen bonds, which play a crucial role in achieving
remarkable stability with a significant affinity, as demonstrated by
molecular dynamics (Figure 10).

The outcomes of molecular docking provide significant
revelations about molecules with high affinity, emphasizing their
close association with the quantity of formed bonds, particularly
hydrogen bonds. Notably, compounds such as ZINC66252348,
displaying an affinity of −8.05 kcal/mol, and A2 with −9.26 kcal/
mol, showcase improved inhibitor binding facilitated by a greater
number of hydrogen bonds. In contrast, A1, characterized by fewer
hydrogen bonds and other bond types, exhibits a lower affinity
of −5.31 kcal/mol, affirming that a heightened count of hydrogen
bonds contributes to elevated affinity interactions. The docking
analysis revealed important insights into the interactions of
various complexes with JAK1 and JAK3 proteins. Hydrogen
bonds were found to play a crucial role in ligand binding, along
with electrostatic and hydrophobic interactions. The average
distances between protein and ligand atoms varied, indicating the
range of these interactions. Molecular dynamics simulations further
supported the stability of selected compounds with high activity in
each series. The analysis highlighted the significance of hydrogen
bonding and other interactions in achieving strong affinity
interactions. The new JAK1 and JAK3 inhibitor molecules exhibit
high affinity and promising potential as drug candidates.

FIGURE 8
Non-covalent interaction analysis in 2D and 3D for compounds
ZINC3843186, ZINC79189223, ZINC66252348 and ZINC66252131.
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Molecular dynamics
To confirm the results of molecular docking, the molecules

undergo an additional round of molecular docking and free-
binding energy calculation. A thorough analysis of molecular
dynamics simulation results is crucial for validating model

stability and proper system equilibration. With Key metrics to
examine, it is good practice to monitor these parameters at
frequent intervals during long simulations to detect any
deviations from expected behavior promptly (Smith et al.,
2020). Molecular dynamics is a powerful technique for

FIGURE 9
Non-covalent interaction analysis in 2D and 3D for compounds ZINC73069247 and ZINC95576632, A1, and A2.
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predicting favorable molecules for in vitro studies. By simulating
molecular behavior, it provides insights into stability, solubility,
target affinity, and interactions. Trajectory analysis identifies key
conformations and interactions, guiding the selection of
promising candidates for further investigation (Al-Karmalawy
et al., 2023; Buskes et al., 2023).

The present study analyzed metrics including energy, pressure,
temperature, drift extracted, RMSD, RMSF, SASA, RoG, and Hbonds
from 100ns simulations, to validate the stability and convergence of
different ligand-protein complexes (Figure 10; Figure 13).

RMSD, RMSF, RoG, SASA, and
hbonds analysis

Analysis of RMSD during a 100 ns simulation of the novel
compounds revealed favorable stability ranging between 1 Å and
2.5 Å. All compounds exhibited a slight increase in RMSD during
the initial 10 ns, followed by stability up to 100 ns, except for
ZINC7918223, which experienced a 0.5 Å RMSD increase after 75 ns,
indicating a pseudo-stability until 100 ns. For RoG and SASA analysis,

the complexes displayed SASA values ranging from 14,000 to 16,500 Å2

and RoG values between 19.6 Å and 20.6 Å. As observed in the analysis
of these parameters, the complexes tended to maintain their
compactness throughout the trajectory. Hbonds analysis revealed that
the compounds formed a minimum to a maximum range of
1–12 hydrogen bonds, which explains their high affinity. RMSF
analysis provided insights into the residue stability of the studied
complexes, highlighting the notable observation that the newly
identified compounds exhibited greater residue stability compared to
the tofacitinib drug. This indicates their inhibitory potential for both
JAK1 and JAK3 in their respective environments.

The findings suggest that the novel compounds possess
favorable stability, structural integrity, and hydrogen bonding
patterns, making them promising candidates for further
exploration as selective JAK1 and JAK3 inhibitors.

Fel and PCA analysis

The 2D results from Fel and PCA in Figures 11, 12 and the 3D
results from Fel provide valuable insights. The Fel results suggest

FIGURE 10
RMSD, RMSF, SASA, RoG, and Hbonds plots.
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information that can be used to extract stable conformations
during a 100ns simulation. PCA is employed to reduce data
dimensionality by identifying the primary directions of
variation, aiding in the visualization and comprehension of
correlations or distinctions within the data. Specifically, for

various compounds, the best minimum energy conformations
are identified.

For ZINC3843186, this conformation is situated between
1.98 RG (nm) and 0.23 RMSD (nm), with PC1 ranging
from −1 to 2 and PC2 from −2 to 2. ZINC79189223 features the

FIGURE 11
2D and 3DPlots of Fel and PCA.
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best minima energy conformation located between 1.96 RG (nm)
and 0.20 RMSD (nm), with PC1 spanning from −1.5 to 2 and
PC2 from −3 to 4. ZINC66252348’s best minima energy
conformation falls between 1.99 RG (nm) and 0.19 RMSD (nm),
with PC1 ranging from −2 to 2 and PC2 from −2 to 5. As for
ZINC66252131, the best minima energy conformation is found
between 2.00 RG (nm) and 0.20 RMSD (nm), with
PC1 between −2 and 3 and PC2 between −2 and 2. Baricitinib
exhibits a best minima energy conformation located between
1.94 RG (nm) and 0.16 RMSD (nm). Lastly, ZINC95576632’s
best minima energy conformation is situated between 2.00 RG
(nm) and 0.20 RMSD (nm), with PC1 ranging from −1 to
1.5 and PC2 from −2 to 2. In conclusion, the results obtained
from Fel and PCA offer insights into the stable conformations of
various compounds during a 100ns simulation.

The comparison of the predicted New Composers with the
compounds from the selected series identifies the best activity for
each target of Series A1 (JAK1) and A2 (JAK3). Even on the analysis
of molecular dynamics, it is observed that the new molecules show
better stability, confirming the results of the previous analyses
(Figures 13, 14).

MM-GBSA
The MM/GBSA results for the compound under study reveal

significant insights. ΔVDWAALS and ΔEEL both exhibit negative
values, signifying attractive van der Waals and electrostatic
contributions to the total free energy, indicating favorable
atom-environment interactions. Conversely, ΔEGB, positive in
value, suggests that solvation in the solvent increases total free
energy due to favorable interactions. Additionally, ΔESURF

negative values imply that creating the solute’s surface in the
solvent releases energy, possibly through better exposure to
hydrophobic groups or reduced unfavorable solvent
interactions. ΔGGAS, with negative values, indicates a
preference for the gas phase due to lower free energy
compared to the solvated phase. Meanwhile, ΔGSOLV, positive
in value, represents increased free solvation energy, likely due to
favorable solvent interactions.

ΔTOTAL values indicate that compounds ZINC3843186,
ZINC79189223, ZINC66252348, ZINC66252131, Baricitinib, and
ZINC95576632 exhibit comparable or slightly lower total free
energies than tofacitinib, implying similar or slightly reduced
binding and stability properties.

ADMET and drug-likness

Next, we assessed the similarity with drugs for the 8 potential
compounds (Table 8). All compounds, except A2, adhered to the
Veber, Lipinski, and Egan rules, indicating that these
compounds were considered drug-like. However, A2 exhibited
a violation due to a high weight violation: TPSA >131.6.
Compounds 72 and 101 had a high molecular weight,
violating the Veber, Lipinski, and Egan rules. The synthetic
accessibility of the studied compounds ranged from 2 to 4.5,
suggesting that these compounds can be synthesized as these
values were closer to 1 (easy) rather than 10 (difficult).

The optimal values of the studied compounds for polarity,
lipophilicity, solubility, metabolism, size, saturation, and flexibility are
also provided in Supplementary Table S3. Subsequently, we evaluated
the ADMET of potential compounds while considering their similarity
to drugs. As indicated in Table 3, all studied compounds exhibit
moderate water solubility. Furthermore, all compounds demonstrate
high absorption in the human intestine and permeability through
CaCO2. All molecules possess P-glycoproteins, except for
compounds ZINC79189223 and ZINC66252348. As depicted in
Figure 15, these molecules do not cross the blood-brain barrier
(BBB) for safety reasons and are also non-toxic. Based on these
factors, and considering previous studies, we can select
ZINC79189223 and ZINC66252348 as potential drugs that can serve
as tools for the inhibition of JAK1 and JAK3.

Biological activity
Comparison of the predicted biological activities (Supplementary

Table S6) of new drugs 2 and 3 with tofacitinib: Tofacitinib, mainly
targets Janus kinases (JAK) 1, 2, 3 which are tyrosine kinases involved in
interleukin signaling. Indicates anti-inflammatory, and
immunosuppressive activities and in the treatment of autoimmune
diseases such as rheumatoid arthritis. Compound 2: Has a more diverse
range of activities targeting various metabolism enzymes such as
cytochromes P450 and with vasodilatory, anti-vasoconstrictor effects.
It also indicates anti-inflammatory and antipruritic activities. It is less
specific than tofacitinib on JAK kinases. Compound 3, Mainly targets
tyrosine kinases like tofacitinib but more broadly on JAK1-3 kinases,
other kinases involved in cellular signaling. Indicates anti-
inflammatory, immunosuppressive activities, in the treatment of
autoimmune and rheumatic diseases like tofacitinib. It could have a
broader activity than tofacitinib given the larger number of predicted

FIGURE 12
Themost stable conformations were obtained using Fel and PCA.
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FIGURE 13
Rmsd, RMSF, SASA, and RoG analysis for (A1, A2).

FIGURE 14
Fel and PCA analysis for (A1, A2).

Frontiers in Molecular Biosciences frontiersin.org26

Faris et al. 10.3389/fmolb.2024.1348277

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2024.1348277


kinase targets. Therefore, as a result, Compound 3 seems to have an
activity profile closer and broader than tofacitinib, while
Compound 2 has more varied activities also targeting enzymes
other than kinases.

Conclusion

In conclusion, our in-depth study aimed at discovering novel selective
inhibitors against JAK1 and JAK3 has led to the identification of optimal
compounds exhibiting both favorable affinity and stability during a 100 ns
trajectory. The predictive models, specifically the 2D-QSARMLRmodels
developed by the ANN model, have demonstrated their capability to
foresee biological activity and stability. These models can be further
utilized in the design of new molecules for future studies. Similarly, the

pharmacophore model aids in identifying key characteristics through the
screening of basic JAK3 inhibitor molecules, guiding the identification of
more potent species. This approach, coupledwith Computer-AidedDrug
Design (CADD), has revealed promising biological activity, exemplified
by the compound ZINC79189223. Notably, this compound exhibits
biological activity primarily against tyrosine kinases, resembling
tofacitinib, with a broader impact on JAK1-3 kinases and other
kinases involved in cellular signaling.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

TABLE 8 Drug-likeness assessment of compounds based on lipinski, Ghose, Veber, Egan, and Muegge rules, and synthetic accessibility.

Compounds Lipinski # Ghose # Veber # Egan # Muegge # Synthetic accessibility

ZINC3843186 Accept Accept Accept Accept Accept 3.75

ZINC79189223 Accept Accept Accept Accept Accept 4.24

ZINC66252348 Accept Accept Accept Accept Accept 3.48

ZINC66252131 Accept Accept Accept Accept Accept 3.51

Baricitinib Accept Accept Accept Accept Accept 3.07

ZINC95576632 Accept Accept Accept Accept Accept 2.29

A1 Accept Accept Accept Accept Accept 2.88

A2 Accept Accept Accept No Accept 3.95

#violations

FIGURE 15
The BOILED-Egg for identifying the new compounds.
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